Introduction to Integrals
Integration is the inverse operation of differentiation, used to calculate the area under curves, volume of objects, and many other applications in mathematics and physics.
Indefinite Integral
∫ (x² + 3x + 1) dx
Definite Integral
∫02 x² dx
Basic Integration Formulas
Power Function
∫ xⁿ dx = xⁿ⁺¹/(n+1) + C
(n ≠ -1)
Function 1/x
∫ 1/x dx = ln|x| + C
Exponential Function
∫ eˣ dx = eˣ + C
∫ aˣ dx = aˣ/ln(a) + C
Sine Function
∫ sin(x) dx = -cos(x) + C
Cosine Function
∫ cos(x) dx = sin(x) + C
Tangent Function
∫ tan(x) dx = -ln|cos(x)| + C
Secant² Function
∫ sec²(x) dx = tan(x) + C
Cosecant² Function
∫ csc²(x) dx = -cot(x) + C
Substitution Method
∫ f(g(x))·g'(x) dx
= ∫ f(u) du (u = g(x))
Integration by Parts
∫ u·dv = u·v - ∫ v·du